The official discord link if you wish to join the discord: https://discord.gg/j5RKwCvAFu

The background art comes from Cherylann1960.

Light Dodging Feats: Difference between revisions

From The Codex
GiverOfThePeace
GiverOfThePeace (talk | contribs) (→‎top: clean up and re-categorisation per CFD)
m
 
(37 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[File:QDonm2Q.gif|right|400px]]
"Light" or "Laser" dodging is a feat commonly done in fiction. However, not every case of this is automatically light, there are generally numerous contradictions to the feats that prove either the author does not understand what light is, thus applying [[Death of the Author]]. There are also many cases, however, of the opposite where something clearly meets light’s requirements but isn’t explicitly called light. We will give the following requirements we view as best for lasers or light.


==Requirements==
{|class=width="100%" style="border:4px solid #856363; border-radius:7.5px; clear:both; font-size:75%; font-family:verdana;" align="center""
We assume light feats are lightspeed until proven otherwise, and the inverse for lasers. Lasers vary in fiction on how they work and their properties.  
! colspan="2" style="background:#FF0000; border-radius:3.25px;" align="center"|''Important Codex Wiki Articles''
We accept lasers or light in fiction if:
|-
|width="15%" "background:grey; border-radius:3.25px;"|'''Important Pages'''
|[[The Codex Wiki]] - [[Site FAQ]] - [[The Codex:About|General Help Page]]- [[Tiering System]] - [[Civilization Tiering System]] - [[Codex Profile Rules|Rules for Codex Profiles]] - [[Common Editing Mistakes]] - [[Disclaimer]] - [[How to Handle Calculations]] - [[Universe]] - [[Multiverse]] - [[Omniverse]] - [[Projectile and Objects Feats]] - [[Dimensional Tiering Explanation]] - [[Common Terminology]] - [[Discussion Rules]] - [[Reference for Common Feats]] - [[Rules for Acceptable Profiles]] - [[Rules for Fanon Profiles]] - [[Misleading Titles]] - [[Mistranslations]] - [[Outside Wiki Standards]] - [[Statements]] - [[Verse Cosmology Categorizations]] - [[Fictional Universes]]
|-
|width="15%" "background:grey; border-radius:3.25px;"|'''Terminology'''
|[[Alignment]] - [[Status]] - [[Protection Level]] - [[Threat Level]] - [[Cardinality]] - [[Grade]] - [[Dimensionality]] - [[Attack Potency]] - [[Durability]] - [[Speed]] - [[Reactions]] - [[Lifting Strength]] - [[Striking Strength]] - [[Range]] - [[Intelligence]] - [[Knowledge]] - [[Powers and Techniques]] - [[State of Being]] - [[Physiology]] - [[Equipment]] - [[No Limits Fallacy]] - [[Omnipotence]] - [[Cinematic Time]] - [[Canon]] - [[Canon|Crossover]] - [[Multipliers]] - [[Environmental Destruction]] - [[Bloodlust]] - [[Chain Reactions]] -[[Outside Help]] - [[Space]] - [[The Kardashev Scale]] - [[Infinity]] - [[Power Source]] - [[Light Speed]] - [[Requirements for Speed of Light/Faster Than Light Speeds]]
|-
|"background:grey; border-radius:3.25px;"|'''Standards'''
|[[Transcendence]] - [[Creation vs Destruction]] - [[Outlier]] - [[Ludonarrative Dissonance]] - [[Inconsistency]] - [[Plot-Induced Stupidity]] - [[Reality - Fiction Interaction]] - [[Powerscaling]] - [[Black Hole]] - [[Wormhole]] - [[Stabilization Feats]] - [[Merging Feats]] - [[Embodying Feats]] - [[Data World Standards]] - [[Dream World Standards]] - [[Standard Battle Assumptions]] - [[One-Shot]] - [[Speed Blitz]] - [[Penetration Damage]] - [[Blunt Force Damage]] - [[Death of the Author]] - [[Versus Threads]] - [[Information Pages]] - [[Light Dodging Feats]] - [[Lightning Standards]] - [[Timeless Void Standards]]
|-
|"background:grey; border-radius:3.25px;"|'''Formats'''
|[[Standard Format for Character Profiles]] - [[Standard Format for Factions]] - [[Standard Format for Cosmic Forces]] - [[Standard Format for Events]] - [[Standard Format for Verse Pages]] - [[Standard Format for Locations Profiles]] - [[Standard Format for Weapon Profiles]] - [[Standard Format for Powers and Abilities]] - [[Standard Format for Civilization Profiles]] - [[Standard Format for Category Names]] - [[Standard Templates For Tabbers]]
|}
<br>
[[File:QDonm2Q.gif|center|400px]]
'''"Beam dodging''' is a feat commonly done in fiction, there are many times where the beams are noted to be "light beams", "laser beams", "rays", etcetera. The following will be discussing how we deal with these and the requirements needed to reach higher speed tiers for beams.
==Exact Measures==
As beam dodging feats are based on speed, there is one way to easily get its speed accepted that doesn't require us to look any deeper into what it can do:
===Stated Speed===
If the beam is directly stated to be a specific speed, then it is allowed, as an example, if a beam was stated to be the “speed of light,” “light speed,” “traveling as fast as light,” or using the specific speed of light (300,000,000 m/s rounded) by a reliable source, then it is fully accepted as light speed.
 
==Main Requirements==
===Light Beam/Laser Beam Requirements===
The most relevant of beam dodging feats normally come from light beams or laser beams, the following will explain the main requirements to prove these are '''Speed of Light''', one cannot only have one of these met:
====Stated to be something by a reliable source====
In this case the beams in question is directly stated to be something by a source. For example, a laser being shot out is directly stated to be one by a scientist. For things reaching speed of light, the source would need to be a laser, radiowave, a "ray", anything within the light spectrum, etcetera.
 
====Traveling in a Straight Line====
The beam travels in a straight line, light and lasers do not bend while moving without some form of interference.
 
====Piercing====
The lasers or light beam pierce a target.
 
====Scientific Origin====
The laser in some way has a scientific origin such a laser pointer.
 
==Supporting Requirements==
The following are requirements used for support only, they cannot be used as the main source of argument for why something is lightspeed.
===Light Transmission===
[[File:Light-Transmission-1024x762.png|center|350px]]
A simple definition of light transmission is: When light travels through a medium such as glass without being reflected absorbed or scattered. When this happens light energy is not lost and can be considered 100% transmitted. 
 
However in all cases as light passes through a lens.
 
Do also know that the type of object gives a degree of transmission.
 
Transparent objects transmit most of the light with little reflection/absorption.
 
Opaque objects completely reflect or absorb light without transmitting it.
 
Some light but not all can pass through translucent/semi-transparent substances.
 
===Refraction===
===Refraction===
[[File:Download_(1324234243524352432).jpg|center|350px]]
[[File:Download_(1324234243524352432).jpg|center|350px]]
'''Refraction''' is the bending of light (it also happens with sound, water, and other waves) as it passes from one transparent substance into another. This bending by refraction makes it possible for us to have lenses, magnifying glasses, prisms, and rainbows. Even our eyes depend upon this bending of light. Without refraction, we wouldn’t be able to focus light onto our retina. The beam itself must refract off of items such as liquids, glass, diamond, etcetera. Do note as pointed out earlier in the parenthesis, refraction can happen with other items than just light, so refraction alone does not fully prove an object is fully light.  
'''Refraction''' is the bending of light (it also happens with sound, water, and other waves) as it passes from one transparent substance into another. This bending by refraction makes it possible for us to have lenses, magnifying glasses, prisms, and rainbows. Even our eyes depend upon this bending of light. Without refraction, we wouldn’t be able to focus light onto our retina. The beam itself must refract off of items such as liquids, glass, diamond, etcetera. Do note as pointed out earlier in the parenthesis, refraction can happen with other items than just light, so refraction alone does not fully prove an object is fully light.  
===Reflection===
====Reflection====
[[File:Types-of-reflection_Science_Learning_Hub.jpg|center|350px]]
[[File:Types-of-reflection_Science_Learning_Hub.jpg|center|350px]]
'''Reflection''' is when light bounces off an object. If the surface is smooth and shiny, like glass, water, or polished metal, the light will reflect at the same angle as it hit the surface. This is called '''specular reflection'''.
'''Reflection''' is when light bounces off an object. If the surface is smooth and shiny, like glass, water, or polished metal, the light will reflect at the same angle as it hit the surface. This is called '''specular reflection'''.
Line 23: Line 72:
'''Light absorption''' is a process by which light is absorbed and converted into energy. An example of this process is photosynthesis in plants. However, light absorption doesn’t occur exclusively in plants, but in all creatures/inorganic substances. Absorption depends on the electromagnetic frequency of the light and the object’s nature of atoms. The absorption of light is therefore directly proportional to the frequency. If they are complementary, light is absorbed. If they are not complementary, then the light passes through the object or gets reflected. These processes usually occur at the same time because the light is usually transmitted at various frequencies. (For instance, sunlight also comprises lights of various frequencies; from around 400 to 800 nm). Therefore, most objects selectively absorb, transmit, or reflect the light. When light is absorbed heat is generated. So the selective absorption of light by a particular material occurs because the frequency of the light wave matches the frequency at which electrons in the atoms of that material vibrate. Thus if the object completely absorbs the beam and converts it into energy such as photosynthesis it will be considered light.
'''Light absorption''' is a process by which light is absorbed and converted into energy. An example of this process is photosynthesis in plants. However, light absorption doesn’t occur exclusively in plants, but in all creatures/inorganic substances. Absorption depends on the electromagnetic frequency of the light and the object’s nature of atoms. The absorption of light is therefore directly proportional to the frequency. If they are complementary, light is absorbed. If they are not complementary, then the light passes through the object or gets reflected. These processes usually occur at the same time because the light is usually transmitted at various frequencies. (For instance, sunlight also comprises lights of various frequencies; from around 400 to 800 nm). Therefore, most objects selectively absorb, transmit, or reflect the light. When light is absorbed heat is generated. So the selective absorption of light by a particular material occurs because the frequency of the light wave matches the frequency at which electrons in the atoms of that material vibrate. Thus if the object completely absorbs the beam and converts it into energy such as photosynthesis it will be considered light.


===Stated as Lightspeed===
===Light Scattering===
If the beam is stated to be the “speed of light,” “light speed,” “traveling as fast as light,” or using the specific speed of light (300,000,000 m/s rounded) by a reliable source, then it is fully accepted as light speed. There would need to be huge contradictions in order to deny this.
[[File:Scattering.jpg|center|350px]]
'''Light Scattering''' is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light, is forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays (electron beams) and X-rays was observed and discussed. With the discovery of subatomic particles (e.g. Ernest Rutherford in 1911) and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.
 
Scattering theory is a framework for studying and understanding the scattering of waves and particles. Prosaically, wave scattering corresponds to the collision and scattering of a wave with some material object, for instance (sunlight) scattered by rain drops to form a rainbow. Scattering also includes the interaction of billiard balls on a table, the Rutherford scattering (or angle change) of alpha particles by gold nuclei, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the inelastic scattering of a fission fragment as it traverses a thin foil. More precisely, scattering consists of the study of how solutions of partial differential equations, propagating freely "in the distant past", come together and interact with one another or with a boundary condition, and then propagate away "to the distant future".
 
'''Single Scattering:''' When radiation is only scattered by one localized scattering center, this is called single scattering.
 
'''Multiple Scattering:''' It is very common that scattering centers are grouped together; in such cases, radiation may scatter many times, in what is known as multiple scattering.
 
The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat counterintuitively, can be modeled as a more deterministic process because the combined results of a large number of scattering events tend to average out. Multiple scattering can thus often be modeled well with diffusion theory.


===Sources of Output===
===Sources of Output===
Line 33: Line 91:


Artificial light includes flashlights, table lamps, neon signs, cameras and televisions are some sources of artificial light.  
Artificial light includes flashlights, table lamps, neon signs, cameras and televisions are some sources of artificial light.  
==Supporting Requirements==
The following are requirements used for support only, they cannot be used as the main source of argument for why something is lightspeed. The only exceptions fall under verses that are already consistently Sub-Relativistic or above.


===Light Composition===
===Light Composition===
It is stated to be composed/consisting of photons or light itself, again by a reliable source. This is not a heavy requirement as many objects can be made of light yet not be actual light itself or move at the speed of light, thus it only falls as a supporting argument rather than a concrete form for proof.  
It is stated to be composed/consisting of photons or light itself, again by a reliable source. This is not a heavy requirement as many objects can be made of light yet not be actual light itself or move at the speed of light, thus it only falls as a supporting argument rather than a concrete form for proof.  


===Traveling in a Straight Line===
===Heat/Burning Effect===
The beam travels in a straight line, this is not a heavy requirement as many objects can travel in a straight line and this alone does not prove light speed or the speed of light.
 
==Heat/Burning Effect==
Normally if the object in question is extremely hot and burns through an object, this can be a good back-up, however again, this does not alone prove light speed or the speed of light. [https://www.iter.org/mag/2/18#:~:text=The%20ITER%20plasma%20will%20be,the%20centre%20of%20the%20Sun.&text=For%20a%20physicist%2C%20temperature%20is,environment%20such%20as%20a%20plasma. There exists types of plasma that are ten times hotter then the sun], and objects that produce extreme heat. Therefore, this alone is not enough sufficient proof.
Normally if the object in question is extremely hot and burns through an object, this can be a good back-up, however again, this does not alone prove light speed or the speed of light. [https://www.iter.org/mag/2/18#:~:text=The%20ITER%20plasma%20will%20be,the%20centre%20of%20the%20Sun.&text=For%20a%20physicist%2C%20temperature%20is,environment%20such%20as%20a%20plasma. There exists types of plasma that are ten times hotter then the sun], and objects that produce extreme heat. Therefore, this alone is not enough sufficient proof.


==Contradictions==
==Laser/Light Contradictions==
While meeting the requirements is good, do note that there are a few criteria which show a beam is not made of real light, other than just not showcasing certain requirements. These are the following:
While meeting the requirements is good, do note that there are a few criteria which show a beam is not made of real light, other than just not showcasing certain requirements. These are the following:
===A Contradicting Laser===
Even if many of the requirements are met, the requirements can be canceled out if it's directly shown that objects like a laser pointer or laser comes out instantly. An example of this would be the Guardians from Breath of the Wild where they shoot out a beam that's directly called a blue beam of light, though before they shoot out the beam they have a laser pointer that comes out instantly, showing the beam itself isn't '''Speed of Light'''. This is a very important contradiction to look out for as it may invalidate any of the light beam dodging feats a character had.
===Inconsistent Speed===
===Inconsistent Speed===
If the beam is shown at different speeds in the same material. This specifically means for reference it traveling at different speeds in the same scene, not in separate scenes.
If the beam is shown at different speeds in the same material. This specifically means for reference it traveling at different speeds in the same scene, not in separate scenes.
===Tangibility===
===Tangibility===
It is tangible and can be interacted with physically by normal humans. If a person naturally has non-physical interaction or the light/laser is specifically made for destruction purposes, this is commonly dismissed.
It is tangible and can be interacted with physically by normal humans. If a person naturally has Non-Standard Interaction or the light/laser is specifically made for destruction purposes, this is commonly dismissed.
===Not Traveling in a Straight Line===
===Not Traveling in a Straight Line===
They do not travel in straight lines outside of scenarios such as reflection/refraction and at times will bend in odd ways.
They do not travel in straight lines outside of scenarios such as reflection/refraction and at times will bend in odd ways.
===Explosions===
===Explosions===
Beams that tend to cause explosions can be dismissed as lasers, though this does not immediately discredit in most cases if as said above, it’s been established that the laser is specifically made as a weapon.
Beams that tend to cause explosions can be dismissed as lasers, though this does not immediately discredit in most cases if as said above, if it’s been established that the laser is specifically made as a weapon.
=== Having Mass ===
Lasers/Light with mass behind them would be a contradiction. Light consists of photons, and [https://math.ucr.edu/home/baez/physics/ParticleAndNuclear/photon_mass.html those photons are specifically massless]. Adding mass to acclaimed lasers/light would significantly devalue feats around them.
==Visible Light==
[[File:Visible-light-spectrum-template_53562-9303.jpg|center|350px]]
The visible light spectrum is the segment of the electromagnetic spectrum that the human eye can view. More simply, this range of wavelengths is called visible light. Typically, the human eye can detect wavelengths from 380 to 700 nanometers. All electromagnetic radiation is light, but we can only see a small portion of this radiation—the portion we call visible light. Cone-shaped cells in our eyes act as receivers tuned to the wavelengths in this narrow band of the spectrum. Other portions of the spectrum have wavelengths too large or too small and energetic for the biological limitations of our perception.
 
As the full spectrum of visible light travels through a prism, the wavelengths separate into the colors of the rainbow because each color is a different wavelength. Violet has the shortest wavelength, at around 380 nanometers, and red has the longest wavelength, at around 700 nanometers.
 
Thus the only light that should be able to be seen by the average person is the visible light, other light on the electromagnetic spectrum wouldn't be visible by the human eye.
==Wavelengths==
[[File:1200px-Sine_wavelength.svg.png|center|350px]]
Wavelengths for forms of electromagnetic radiation like radio waves, light waves or infrared (heat) waves make characteristic patterns as they travel through space. Each wave has a certain shape and length. The distance between peaks (high points) is called wavelength.


==Conclusions==
==Conclusions==
Line 63: Line 129:


==Calculation==
==Calculation==
===Laser Calculation===
Once your laser is accepted if you feel you’d like to get a value out of the laser or light dodging feat you can get it calculated (do note that calculations aren’t requirements unless the laser dodging was done from a far enough distance).
Once your laser is accepted if you feel you’d like to get a value out of the laser or light dodging feat you can get it calculated (do note that calculations aren’t requirements unless the laser dodging was done from a far enough distance).


Line 75: Line 142:
==Sources==
==Sources==
For further information regarding the various types of light, read the following:
For further information regarding the various types of light, read the following:
*[http://www.revicoptics.com/research/light-transmission/#:~:text=A%20simple%20definition%20of%20light,can%20be%20considered%20100%25%20transmitted. Light transmission].
*[https://www.sciencelearn.org.nz/resources/48-reflection-of-light#:~:text=Reflection%20is%20when%20light%20bounces,This%20is%20called%20specular%20reflection.&text=Light%20reflects%20from%20a%20smooth,as%20it%20hits%20the%20surface. Source for reflection].  
*[https://www.sciencelearn.org.nz/resources/48-reflection-of-light#:~:text=Reflection%20is%20when%20light%20bounces,This%20is%20called%20specular%20reflection.&text=Light%20reflects%20from%20a%20smooth,as%20it%20hits%20the%20surface. Source for reflection].  
*[https://www.sciencelearn.org.nz/resources/49-refraction-of-light Source for refraction].
*[https://www.sciencelearn.org.nz/resources/49-refraction-of-light Source for refraction].
*[https://intl.siyavula.com/read/science/grade-8/visible-light/12-visible-light?id=toc-id-5 Light absorption].
*[https://intl.siyavula.com/read/science/grade-8/visible-light/12-visible-light?id=toc-id-5 Light absorption].
*[https://www.universe.wales/lightsources/ Light sources].
*[https://www.universe.wales/lightsources/ Light sources].
*[https://science.nasa.gov/ems/09_visiblelight Visible light sources].
*[https://www.qrg.northwestern.edu/projects/vss/docs/communications/1-what-is-wavelength.html Wavelength sources].
[[Category:Important]]
[[Category:Important]]
{{Discussions}}

Latest revision as of 04:35, 4 July 2024

Important Codex Wiki Articles
Important Pages The Codex Wiki - Site FAQ - General Help Page- Tiering System - Civilization Tiering System - Rules for Codex Profiles - Common Editing Mistakes - Disclaimer - How to Handle Calculations - Universe - Multiverse - Omniverse - Projectile and Objects Feats - Dimensional Tiering Explanation - Common Terminology - Discussion Rules - Reference for Common Feats - Rules for Acceptable Profiles - Rules for Fanon Profiles - Misleading Titles - Mistranslations - Outside Wiki Standards - Statements - Verse Cosmology Categorizations - Fictional Universes
Terminology Alignment - Status - Protection Level - Threat Level - Cardinality - Grade - Dimensionality - Attack Potency - Durability - Speed - Reactions - Lifting Strength - Striking Strength - Range - Intelligence - Knowledge - Powers and Techniques - State of Being - Physiology - Equipment - No Limits Fallacy - Omnipotence - Cinematic Time - Canon - Crossover - Multipliers - Environmental Destruction - Bloodlust - Chain Reactions -Outside Help - Space - The Kardashev Scale - Infinity - Power Source - Light Speed - Requirements for Speed of Light/Faster Than Light Speeds
Standards Transcendence - Creation vs Destruction - Outlier - Ludonarrative Dissonance - Inconsistency - Plot-Induced Stupidity - Reality - Fiction Interaction - Powerscaling - Black Hole - Wormhole - Stabilization Feats - Merging Feats - Embodying Feats - Data World Standards - Dream World Standards - Standard Battle Assumptions - One-Shot - Speed Blitz - Penetration Damage - Blunt Force Damage - Death of the Author - Versus Threads - Information Pages - Light Dodging Feats - Lightning Standards - Timeless Void Standards
Formats Standard Format for Character Profiles - Standard Format for Factions - Standard Format for Cosmic Forces - Standard Format for Events - Standard Format for Verse Pages - Standard Format for Locations Profiles - Standard Format for Weapon Profiles - Standard Format for Powers and Abilities - Standard Format for Civilization Profiles - Standard Format for Category Names - Standard Templates For Tabbers


"Beam dodging is a feat commonly done in fiction, there are many times where the beams are noted to be "light beams", "laser beams", "rays", etcetera. The following will be discussing how we deal with these and the requirements needed to reach higher speed tiers for beams.

Exact Measures

As beam dodging feats are based on speed, there is one way to easily get its speed accepted that doesn't require us to look any deeper into what it can do:

Stated Speed

If the beam is directly stated to be a specific speed, then it is allowed, as an example, if a beam was stated to be the “speed of light,” “light speed,” “traveling as fast as light,” or using the specific speed of light (300,000,000 m/s rounded) by a reliable source, then it is fully accepted as light speed.

Main Requirements

Light Beam/Laser Beam Requirements

The most relevant of beam dodging feats normally come from light beams or laser beams, the following will explain the main requirements to prove these are Speed of Light, one cannot only have one of these met:

Stated to be something by a reliable source

In this case the beams in question is directly stated to be something by a source. For example, a laser being shot out is directly stated to be one by a scientist. For things reaching speed of light, the source would need to be a laser, radiowave, a "ray", anything within the light spectrum, etcetera.

Traveling in a Straight Line

The beam travels in a straight line, light and lasers do not bend while moving without some form of interference.

Piercing

The lasers or light beam pierce a target.

Scientific Origin

The laser in some way has a scientific origin such a laser pointer.

Supporting Requirements

The following are requirements used for support only, they cannot be used as the main source of argument for why something is lightspeed.

Light Transmission

A simple definition of light transmission is: When light travels through a medium such as glass without being reflected absorbed or scattered. When this happens light energy is not lost and can be considered 100% transmitted.

However in all cases as light passes through a lens.

Do also know that the type of object gives a degree of transmission.

Transparent objects transmit most of the light with little reflection/absorption.

Opaque objects completely reflect or absorb light without transmitting it.

Some light but not all can pass through translucent/semi-transparent substances.

Refraction

Refraction is the bending of light (it also happens with sound, water, and other waves) as it passes from one transparent substance into another. This bending by refraction makes it possible for us to have lenses, magnifying glasses, prisms, and rainbows. Even our eyes depend upon this bending of light. Without refraction, we wouldn’t be able to focus light onto our retina. The beam itself must refract off of items such as liquids, glass, diamond, etcetera. Do note as pointed out earlier in the parenthesis, refraction can happen with other items than just light, so refraction alone does not fully prove an object is fully light.

Reflection

Reflection is when light bounces off an object. If the surface is smooth and shiny, like glass, water, or polished metal, the light will reflect at the same angle as it hit the surface. This is called specular reflection.

Diffuse reflection is when light hits an object and reflects in lots of different directions. This happens when the surface is rough. Most of the things we see are because light from a source has reflected off it.

For example, if you look at a bird, light has reflected off that bird and traveled in nearly all directions. If some of that light enters your eyes, it hits the retina at the back of your eyes. An electrical signal is passed to your brain, and your brain interprets the signals as an image.

Mirror reflection is when parallel light rays hit a concave mirror they reflect inwards towards a focal point. Each individual ray is still reflecting at the same angle as it hits that small part of the surface.

It should be noted that reflection should happen purely off smooth surfaces and meet one of these two reflection requirements in order to be considered legitimate light.

Light Absorption

Light absorption is a process by which light is absorbed and converted into energy. An example of this process is photosynthesis in plants. However, light absorption doesn’t occur exclusively in plants, but in all creatures/inorganic substances. Absorption depends on the electromagnetic frequency of the light and the object’s nature of atoms. The absorption of light is therefore directly proportional to the frequency. If they are complementary, light is absorbed. If they are not complementary, then the light passes through the object or gets reflected. These processes usually occur at the same time because the light is usually transmitted at various frequencies. (For instance, sunlight also comprises lights of various frequencies; from around 400 to 800 nm). Therefore, most objects selectively absorb, transmit, or reflect the light. When light is absorbed heat is generated. So the selective absorption of light by a particular material occurs because the frequency of the light wave matches the frequency at which electrons in the atoms of that material vibrate. Thus if the object completely absorbs the beam and converts it into energy such as photosynthesis it will be considered light.

Light Scattering

Light Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light, is forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays (electron beams) and X-rays was observed and discussed. With the discovery of subatomic particles (e.g. Ernest Rutherford in 1911) and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

Scattering theory is a framework for studying and understanding the scattering of waves and particles. Prosaically, wave scattering corresponds to the collision and scattering of a wave with some material object, for instance (sunlight) scattered by rain drops to form a rainbow. Scattering also includes the interaction of billiard balls on a table, the Rutherford scattering (or angle change) of alpha particles by gold nuclei, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the inelastic scattering of a fission fragment as it traverses a thin foil. More precisely, scattering consists of the study of how solutions of partial differential equations, propagating freely "in the distant past", come together and interact with one another or with a boundary condition, and then propagate away "to the distant future".

Single Scattering: When radiation is only scattered by one localized scattering center, this is called single scattering.

Multiple Scattering: It is very common that scattering centers are grouped together; in such cases, radiation may scatter many times, in what is known as multiple scattering.

The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat counterintuitively, can be modeled as a more deterministic process because the combined results of a large number of scattering events tend to average out. Multiple scattering can thus often be modeled well with diffusion theory.

Sources of Output

It has its origin at a realistic source of light.

Natural sources of light include the sun, stars, fire, and electricity in storms. There are even some animals and plants that can create their own light, such as fireflies, jellyfish, and mushrooms. This is called bioluminescence.

Artificial light includes flashlights, table lamps, neon signs, cameras and televisions are some sources of artificial light.

Light Composition

It is stated to be composed/consisting of photons or light itself, again by a reliable source. This is not a heavy requirement as many objects can be made of light yet not be actual light itself or move at the speed of light, thus it only falls as a supporting argument rather than a concrete form for proof.

Heat/Burning Effect

Normally if the object in question is extremely hot and burns through an object, this can be a good back-up, however again, this does not alone prove light speed or the speed of light. There exists types of plasma that are ten times hotter then the sun, and objects that produce extreme heat. Therefore, this alone is not enough sufficient proof.

Laser/Light Contradictions

While meeting the requirements is good, do note that there are a few criteria which show a beam is not made of real light, other than just not showcasing certain requirements. These are the following:

A Contradicting Laser

Even if many of the requirements are met, the requirements can be canceled out if it's directly shown that objects like a laser pointer or laser comes out instantly. An example of this would be the Guardians from Breath of the Wild where they shoot out a beam that's directly called a blue beam of light, though before they shoot out the beam they have a laser pointer that comes out instantly, showing the beam itself isn't Speed of Light. This is a very important contradiction to look out for as it may invalidate any of the light beam dodging feats a character had.

Inconsistent Speed

If the beam is shown at different speeds in the same material. This specifically means for reference it traveling at different speeds in the same scene, not in separate scenes.

Tangibility

It is tangible and can be interacted with physically by normal humans. If a person naturally has Non-Standard Interaction or the light/laser is specifically made for destruction purposes, this is commonly dismissed.

Not Traveling in a Straight Line

They do not travel in straight lines outside of scenarios such as reflection/refraction and at times will bend in odd ways.

Explosions

Beams that tend to cause explosions can be dismissed as lasers, though this does not immediately discredit in most cases if as said above, if it’s been established that the laser is specifically made as a weapon.

Having Mass

Lasers/Light with mass behind them would be a contradiction. Light consists of photons, and those photons are specifically massless. Adding mass to acclaimed lasers/light would significantly devalue feats around them.

Visible Light

The visible light spectrum is the segment of the electromagnetic spectrum that the human eye can view. More simply, this range of wavelengths is called visible light. Typically, the human eye can detect wavelengths from 380 to 700 nanometers. All electromagnetic radiation is light, but we can only see a small portion of this radiation—the portion we call visible light. Cone-shaped cells in our eyes act as receivers tuned to the wavelengths in this narrow band of the spectrum. Other portions of the spectrum have wavelengths too large or too small and energetic for the biological limitations of our perception.

As the full spectrum of visible light travels through a prism, the wavelengths separate into the colors of the rainbow because each color is a different wavelength. Violet has the shortest wavelength, at around 380 nanometers, and red has the longest wavelength, at around 700 nanometers.

Thus the only light that should be able to be seen by the average person is the visible light, other light on the electromagnetic spectrum wouldn't be visible by the human eye.

Wavelengths

Wavelengths for forms of electromagnetic radiation like radio waves, light waves or infrared (heat) waves make characteristic patterns as they travel through space. Each wave has a certain shape and length. The distance between peaks (high points) is called wavelength.

Conclusions

Please note that it’s preferable to meet most of these conditions, meeting only one will not give one qualification for lightspeed.

The closer a series is lightspeed or if it’s faster than light in (EarthBound as an example), there is less of a burden of proof to show that the laser is a true laser.

Calculation

Laser Calculation

Once your laser is accepted if you feel you’d like to get a value out of the laser or light dodging feat you can get it calculated (do note that calculations aren’t requirements unless the laser dodging was done from a far enough distance).

For this you use the speed of light in a vacuum (300,000,000 m/s). To calculate, determine the distance the character moved in the same timeframe as the laser/light beam and plug in this formula: (Distance the character moved in m * speed of light in m/s)/(Distance the laser moved in conjunction to when the character started moving)

For example, if a character were to move 7m while a light beam moved 10m, his or her speed would be this: (7 m * 300,000,000 m/s)/(10) = 210,000,000 m/s or Relativistic+.

In manga and other series without visual animation of the movements of objects and characters, it is harder to determine and will generally be accepted as Speed of Light or FTL. Though you could alternatively in media like manga or comics attempt to see how fast the character moved compared to the source of the beam for how fast they are. As stated prior, calculations aren’t a requirement in cases like these.

Sources

For further information regarding the various types of light, read the following: